๐ง CNN ์ค์ต
<์๊ธ์จ ์ธ์ model>
cf. print(model.evaluate(X_train, y_train))๋ฅผ ์ณ๋ณด๋ฉด ๋ค์๊ณผ ๊ฐ์ ์ถ๋ ฅ์ด ๋์จ๋ค.
1875/1875 [==============================] - 2s 1ms/step - loss: 1.0363e-06 - accuracy: 1.0000
[1.0362750799686182e-06, 1.0]
์ฆ, model.evaluate(X_train, y_train)[0]์ loss, model.evaluate(X_train, y_train)[1]์ ์ ํ๋์ธ ๊ฒ์ ์ ์ ์๋ค.
'A.I > Deep Learning' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
self.DL.(04-1). RNN (์ํ ์ ๊ฒฝ๋ง)์ค์ต_IMDB (0) | 2023.01.19 |
---|---|
self.DL.(04). RNN, LSTM, GRU (Recurrent Neural Network, Long Short Term Memory, Gated Recurrent Unit) (0) | 2023.01.18 |
self.DL.(03). CNN (Convolution Neural Network) (0) | 2023.01.18 |
self.DL.(02-3). regression (ํ๊ท์ ๊ฒฝ๋ง)์ค์ต (0) | 2023.01.18 |
self.DL.(02-2). classification (๋ถ๋ฅ์ ๊ฒฝ๋ง)์ค์ต (0) | 2023.01.18 |