Part 1. Basic Concepts. &. Traditional Methods

๐Ÿ“Œ Basic Concepts

๐Ÿค” Domain๊ณผ DA๋ž€?

Domain: ๋ฐ์ดํ„ฐ๊ฐ€ ์œ ๋ž˜ํ•œ ๊ณณ์ด๋‚˜ ํŠน์ • ๋ถ„ํฌ๋ฅผ ์˜๋ฏธ

DA ๊ธฐ๋ณธ๊ฐœ๋…:
์•„๋ž˜์™€ ๊ฐ™์ด source์™€ target ๋ถ„ํฌ๊ฐ„์˜ Domain Shift๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ ,
๊ทธ ์ •๋„๊ฐ€ ์‹ฌํ•ด์ง€๋ฉด test์„ฑ๋Šฅ์€ ๋–จ์–ด์ง„๋‹ค.

 

๐Ÿค” synthetic data๋ž€?

target domain๊ณผ ์œ ์‚ฌํ•œ source dataset์„ synthetic data๋ผ ํ•œ๋‹ค.

 

 

๐Ÿค”  DA์˜ ๋ชฉ์ 


์ธ target๊ณผ source dataset์— ๋Œ€ํ•ด


๋ฅผ ๋งŒ์กฑํ•˜๋Š”
transformation T(.)ํ•จ์ˆ˜๋ฅผ ์ฐพ๋Š” ๊ฒƒ.

 

โˆ™ Concept Shift [Ling et al; ICCV2013]

โˆ™ Prior Shift [Kouw & Loog ; 2018]

๋“ฑ์ด ์žˆ์—ˆ์œผ๋‚˜ ๋ณธ ๋‚ด์šฉ์€ Covariate Shift๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค.

 

 

 

 

 

 

 

๐Ÿ“Œ Traditional DA

Metric Learning

Metric Learning์€ "๊ฑฐ๋ฆฌ๊ธฐ๋ฐ˜"DA๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค.
Src, Tgt์˜ label์ด ๊ฐ™๋‹ค๋ฉด threshold๋ณด๋‹ค ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊น๋„๋ก ํ•™์Šตํ•œ๋‹ค.

๋‹จ์ ) Source, Target์˜ label์ด ๋ชจ๋‘ ํ•„์š”.

 

 

Subspace Representations

Src์™€ Tgt์ด ๋‹ค๋ฅธ subspace์— ๋†“์—ฌ์žˆ์„ ๋•Œ,
์ด ๋‘˜์˜ subspace์— ๋Œ€ํ•ด subspace๋ฅผ samplingํ•˜๊ฑฐ๋‚˜ Integrationํ•˜๋Š” ๋“ฑ alignment(์กฐ์ •)ํ•˜์—ฌ ํ•ด๊ฒฐ.

 

 

Matching Distributions

Domain Shift๋กœ ์ธํ•œ Distribution์ฐจ์ด๋ฅผ ์ง์ ‘์ ์œผ๋กœ ํ•ด๊ฒฐ

๐Ÿ“Œ MMD๋ฐฉ์‹ (Maximum Mean Discrepancy)
1. Src์™€ Tgt๋ฅผ Hilbert Space(Completeness๋ฅผ ๊ฐ–๋Š” ๋‚ด์ ๊ณต๊ฐ„)๋กœ mapping
2. Distribution์˜ ์ฐจ์ด๋ฅผ ๊ณ„์‚ฐ
(Intra class๊ฐ„์˜ ์ฐจ์ด๋Š” ์ ์–ด์•ผํ•˜๊ณ )
(Inter class๊ฐ„์˜ ์ฐจ์ด๋Š” ์ปค์•ผํ•จ)

cf) MMD๋ฅผ ๋ณ€ํ˜•ํ•ด source sampling์— weight๋ฅผ ํ•™์Šตํ•˜๊ฑฐ๋‚˜ resamplingํ•˜๋Š” ๋ฐฉ๋ฒ•๋„ ์กด์žฌ


๐Ÿ“Œ TCA๋ฐฉ์‹ (Transfer Component Analysis)
TCA๋ฐฉ์‹์€ Feature space → Hilbert space → Latent space๋กœ ์˜ฎ๊ฒจ๊ฐ€๋ฉฐ mappingํ•˜๋Š” W๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.




๐Ÿ“Œ DIP๋ฐฉ์‹ (Domain Invariant Projection)
TCA ์—ญ์ˆœ, MMD minimizeํ•˜๋„๋ก ํ•™์Šต.

 

 

 

 

 

 

 

Part 2. Visual DA in Deep Learning

DNN์„ ํ†ตํ•ด ์ถœ๋ ฅ๋œ Deep features๋Š” ๋” ์ถ”์ƒ์ ์ด๊ณ  ์ด๋ฏธ Domain bias๊ฐ€ ์ค„์–ด๋“ค์—ˆ๊ธฐ ๋•Œ๋ฌธ์— Deep Learning์˜ ๋„์ž…์€ ๋น ๋ฅธ ์„ฑ๋Šฅ๋ฐœ์ „์„ ์•ผ๊ธฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

 

๋˜ํ•œ, ๋” ๊นŠ๊ฒŒ fine-tuningํ•˜๋Š” ๊ฒƒ์ด ๋งˆ์ง€๋ง‰ ์ธต์—์„œ๋งŒ ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๋‚˜์€ ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค

 

MMD-based Network

๐Ÿ“Œ Deep Domain Confusion(2014)
[Src Domain]:
labeled data๋กœ Lc๋ฅผ ์ตœ์ ํ™” + Tgt์˜ Unlabeled data๋กœ feature vector์ถ”์ถœ
→ Src์™€ Tgt data๊ฐ„์˜ MMD ๊ณ„์‚ฐ, minimize

 

 

 

DANN(๐ŸŒŸ)

Domain-Adversarial Training of Neural Networks (2015)


[๋ชฉ์ ]:
โˆ™ Src domain์—์„œ classification์„ฑ๋Šฅ์ด ๋†’์•„์•ผํ•จ. (Discriminativeness๋Š” ์œ ์ง€)
โˆ™ Src domain๊ณผ Tgt domain์„ ๊ตฌ๋ณ„ํ•˜์ง€ ๋ชปํ•ด์•ผํ•จ. (Domain-Invariance๋„ ๊ณ ๋ ค)

์ผ์ข…์˜ GAN์—์„œ ์‚ฌ์šฉ๋˜๋˜ Discriminator๋ฅผ ๊ฐ€์ ธ๋‹ค ์‚ฌ์šฉํ•œ ๋Š๋‚Œ!
๋‹ค๋งŒ, ์ด์ „ ๋ฐฉ๋ฒ•๋“ค์€ Feature space Distribution์„ matchํ•˜๊ธฐ์œ„ํ•ด Reweighting, transformation์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ์œผ๋‚˜
DANN์€ โ‘  Feature Representation์ž์ฒด๋ฅผ ๋ฐ”๊พธ๋Š” ๋ฐฉ์‹ + โ‘ก DA์™€ Deep Feature Learning์„ ํ•˜๋‚˜์˜ ํ•™์Šต๊ณผ์ •์•ˆ์—์„œ ํ•ด๊ฒฐํ•œ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ โ‘ข ๋ถ„ํฌ๊ฐ„ ์ฐจ์ด์ธก์ • ์‹œ, Deep Discriminatively-Trained Classifier๋ฅผ ์‚ฌ์šฉ(GAN์ปจ์…‰) ๋˜ํ•œ ์‚ฌ์šฉํ•œ๋‹ค.

Feature Extraction์„ ์œ„ํ•œ Embedding model์— ๋Œ€ํ•ด
Src Domain Classification Loss๋ฅผ ์ค„์ž„
Domain Classifier๋Š” Src์ธ์ง€ Tgt์ธ์ง€ ๊ตฌ๋ถ„
์ด๋•Œ, Domain๊ตฌ๋ถ„๋ชปํ•˜๊ฒŒ ํ•™์Šตํ•ด์•ผํ•ด์„œ Gradient๋ฅผ ๋ฐ”๊ฟ”์„œ backwardํ•œ๋‹ค.

 

 

 

 

 

 

 

 

 

Part 3. Beyond Classical DA

๊ทธ๋ฆผ์— ๊ต‰์žฅํžˆ ๋งŽ์€ ๊ฒƒ๋“ค์ด ํ‘œ์‹œ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ด์ค‘์—์„œ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ์‹ 4๊ฐ€์ง€๋งŒ ์—ฌ๊ธฐ์„œ ์งš๊ณ  ๋„˜์–ด๊ฐ€์ž.

 

 

 

i) Transfer Learning

๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฐฉ์‹, Pretrained model๊ณผ Tgt data๋งŒ ํ•„์š”.
Src data๋กœ pretrain → Tgt data๋กœ Fine-tuning

 

 

ii) Semi-supervised DA

labeled Src data์™€ labeled Tgt data ๊ฐ™์ด ํ™œ์šฉ.

Domain๊ณผ ์ƒ๊ด€์—†์ด Class๊ฐ€ ๋™์ผํ•˜๋ฉด(Intra-class) Loss๊ฐ€ ์ž‘์•„์ง€๊ฒŒ ํ•™์Šตํ•˜๊ณ 
Class๊ฐ€ ๋‹ค๋ฅด๋ฉด(Inter-class) Loss๋Š” ์–ด๋Š ์ •๋„๊นŒ์ง€ (๋ณดํ†ต margin์„ ์„ค์ •ํ•ด) ์ปค์ง€๊ฒŒ ํ•™์Šต

 

 

 

iii) Transductive Unsupervised DA

๐Ÿค” Truansductive...?
labeled Src data์™€ Unlabeld Tgt data๋ฅผ ์‚ฌ์šฉํ•ด ํ•™์Šตํ•˜๋Š” ๊ฒƒ

 

 

 

iv) Self-Supervised Learning

Label์—†์ด ํ•™์Šต๊ฐ€๋Šฅํ•œ self-learning task์ƒ์„ฑ ํ›„, ์ด๋ฅผ ์ด์šฉํ•ด Unlabeled Learning์„ ์ง„ํ–‰.
์œ„์˜ Jigsawํผ์ฆ์ฒ˜๋Ÿผ ์ชผ๊ฐœ์–ด ์„ž์€ ํ›„, ์›๋ž˜์˜ ์ˆœ์„œ๋ฅผ ํ•™์Šตํ•˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.
์ด๋Š” Src data์™€ Tgt data์˜ ์œ ๋ฌด์— ๋‹ค๋ผ ๋‹ค๋ฅธ ๊ธฐ๋ฒ•๋“ค๊ณผ ๊ฐ™์ด ์‚ฌ์šฉ๊ฐ€๋Šฅํ•˜๋‹ค.

Ex)
Tgt > Src : Transfer Learning๊ณผ ๊ฐ™์ด ์‚ฌ์šฉ
Labeled Src ๊ฐ€ ์กด์žฌ : Unsupervised DA๋ฐฉ์‹ ์‚ฌ์šฉ

 

 

 

 

 

 

 

 

 

Part 4. Perspectives. &. Outlook

๐Ÿ“Œ Multi-Domain Learning

๐Ÿค” Mutli-Domain Learning? ๊ทธ๊ฒŒ ๋ญ์ฃ 
์—ฌ๋Ÿฌ ๋„๋ฉ”์ธ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ฑฐ๋‚˜ ์ ์šฉ์‹œ์ผœ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์—์„œ ๊ฐ•๊ฑดํ•˜๊ฒŒ ๋™์ž‘ํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ .
Domain: ๋ฐ์ดํ„ฐ๊ฐ€ ์œ ๋ž˜ํ•œ ๊ณณ์ด๋‚˜ ํŠน์ • ๋ถ„ํฌ๋ฅผ ์˜๋ฏธ,

Multi-domain learning์€ ์ฃผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ƒํ™ฉ์—์„œ ํ™œ์šฉ๋œ๋‹ค:
โˆ™ Domain Adaptation: ๋ชจ๋ธ์ด ํ•™์Šตํ•œ ๋„๋ฉ”์ธ๊ณผ ํ…Œ์ŠคํŠธ ๋„๋ฉ”์ธ์ด ๋‹ค๋ฅผ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ. 
โˆ™ Domain Generalization: ์—ฌ๋Ÿฌ ๋„๋ฉ”์ธ์—์„œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ํŠน์„ฑ์„ ํ•™์Šตํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ๋„๋ฉ”์ธ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ. ์ฆ‰, ๋ชจ๋ธ์ด ์—ฌ๋Ÿฌ ๋„๋ฉ”์ธ์—์„œ ์–ป์€ ์ง€์‹์„ ๋” ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ๋กœ ํ™•์žฅํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธ.

์ด์ )
โˆ™ ๋ฉ”๋ชจ๋ฆฌ ์ ˆ์•ฝ ๋ฐ multi-taskํšจ๊ณผ,
โˆ™ Incremental Learning (๊ธฐ์กด์— ํ•™์Šต๋œ ์ง€์‹์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ๋˜๋Š” ํด๋ž˜์Šค๋ฅผ ์ถ”๊ฐ€ํ•ด ๋ชจ๋ธ์„ ์—…๋ฐ์ดํŠธ ํ•˜๋Š” ๊ฒƒ.)


์ด์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ sharing/seperation์„ ์ง„ํ–‰ํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ MDL๋ฐฉ๋ฒ•๋ก ์ด ์กด์žฌํ•œ๋‹ค.
โˆ™ Independent Networks
โˆ™ Maximally Shared
โˆ™ Residual Adapters

 

 

 

๐Ÿ“Œ Meta-Learning for DA & DG

Meta-Learning Brief

๐Ÿค” DA vs Meta-Learning

[DA]: 
โˆ™ ๋ชฉํ‘œ) ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ ์ „์ด(transfer), ์„ฑ๋Šฅํ–ฅ์ƒ์„ ์œ„ํ•ด ๋ชจ๋ธ์„ ์กฐ์ •.

โˆ™ ๋ฐฉ๋ฒ•) ์ฃผ๋กœ ํ•œ ๋„๋ฉ”์ธ์—์„œ ์–ป์€ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šต, ๊ทธ ๋ชจ๋ธ์„ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์˜ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
์ด๋ฅผ ์œ„ํ•ด ๋„๋ฉ”์ธ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ฑฐ๋‚˜ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

[Meta-Learning]:
โˆ™ ๋ชฉํ‘œ) ์ž‘์€ ๋ฐ์ดํ„ฐ์—์„œ ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹ ์ž์ฒด์˜ ๊ฐœ์„ ์œผ๋กœ ์ƒˆ ๋„๋ฉ”์ธ์— ๋นจ๋ฆฌ ์ ์‘,ํ•™์Šต์— ์ดˆ์ .
์ฆ‰, "์ข‹์€ Inductive Bias"๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ์ค‘์š”!

โˆ™ ๋ฐฉ๋ฒ•) ์ž‘์€ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•˜๊ณ  ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•ด ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต ๋ฐฉ๋ฒ•์ด๋‚˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•ฉ๋‹ˆ๋‹ค.

[Summary]
DA: ํ•˜๋‚˜์˜ ๋„๋ฉ”์ธ์—์„œ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ ์ „์ดํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ค‘์ 
[Meta-Learning]: ๋ชจ๋ธ ์ž์ฒด์˜ ํ•™์Šต ๋ฐฉ์‹์„ ๊ฐœ์„ ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ž‘์—…์ด๋‚˜ ๋„๋ฉ”์ธ์— ๋น ๋ฅด๊ฒŒ ์ ์‘ํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ค‘์ 

 

 

Meta-Learning for DA 

๋งŽ์€ ์ธ๊ธฐ์žˆ๋Š” DA์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ์ข‹์€ ์‹œ์ž‘์ ์— ์œ„์น˜ํ–ˆ๋Š”์ง€์— ์˜์กด์ ์ด๋‹ค.
→ ์ด์— ๋Œ€ํ•ด Meta-Learn์ด ์ข‹์€ ์‹œ์ž‘์ ์ด ๋  ์ˆ˜ ์žˆ์„๊นŒ?


 

 

Meta-Learning for DG

DG Problem์„ค์ •์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด๋ณด์ž.


๐Ÿค” ์–ด๋–ป๊ฒŒ Meta๊ฐ์ฒด๋ฅผ ์ •์˜ํ•  ๊ฒƒ์ธ๊ฐ€?
Multi-Src์—์„œ, validation domain์„ฑ๋Šฅ์„ ์ตœ์ ํ™”ํ•ด์•ผํ•œ๋‹ค.

์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ (meta)-learning์— ์‚ฌ์šฉํ•ด์•ผํ• ๊นŒ?


โˆ™ MetaReg (NeurIPS-18):
MetaReg๋Š” ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™”๋ฅผ ์œ„ํ•ด ๋ฉ”ํƒ€-์ •๊ทœํ™”๋ฅผ ์‚ฌ์šฉ, ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅํ–ฅ์ƒ์„ ์œ„ํ•ด ๋ฉ”ํƒ€-์ •๊ทœํ™”๋ฅผ ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค.

โˆ™ Feature-Critic (ICML-19):
Feature-Critic๋Š” ์ด์งˆ์ ์ธ ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™”๋ฅผ ์œ„ํ•œ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ ํŠน์ง• ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” '๋น„ํ‰๊ฐ€(critic)' ๋„คํŠธ์›Œํฌ๋ฅผ ์ถ”๊ฐ€์ ์ธ ์†์‹ค ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋„๋ฉ”์ธ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ์ค„์ด๊ณ  ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿค” ์–ด๋–ป๊ฒŒ Meta-์ตœ์ ํ™”๋ฅผ ํ•  ๊ฒƒ์ธ๊ฐ€?
Meta-Learning์—์„œ ์ตœ์ ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€๋ฐ, ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ช‡ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋“ค์ด ์ œ์•ˆ๋œ๋‹ค.


โˆ™ Bilevel Optimization:
meta-train ๋‹จ๊ณ„์—์„œ, ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋™์•ˆ ๋‹ค๋ฅธ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ
๋ฉ”ํƒ€-ํŠธ๋ ˆ์ด๋‹์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” ๋ชจ๋ธ์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ฉ”ํƒ€-๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.


์‹ค์ œ ์ ์šฉ:
์‹ค์ œ๋กœ๋Š” ์ „ํ†ต์ ์ธ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ์™€ ํ•จ๊ป˜ ๋ชจ๋ธ์„ ์—…๋ฐ์ดํŠธํ•˜๊ณ , ๋ฉ”ํƒ€-๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋„๋ฉ”์ธ ๊ฐ„์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฒˆ๊ฐˆ์•„๊ฐ€๋ฉฐ ์ ์šฉํ•œ๋‹ค.
์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹๋“ค์€ ๋ฉ”ํƒ€-๋Ÿฌ๋‹์—์„œ์˜ ์ตœ์ ํ™”๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋น„์šฉ๊ณผ ์•ˆ์ •์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋‹ค.

๐Ÿค” Conclusion
Meta-DA ๋ฐ Meta-DG๊ฐ€ ๊ธฐ์กด์˜ DA & DG ์—ฐ๊ตฌ๋ฅผ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค.

 

 

 

 

๐Ÿ“Œ Emerging Problem Areas & Applications

DG: Heterogeneous Case

โˆ™ Homogeneous DG (๋™์งˆ์  ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™”):
๊ณต์œ ๋œ(Src์™€ Tgt์—์„œ ๋™์ผํ•œ) Label space๊ฐ€ ์กด์žฌ. ์ฆ‰ label์˜ ์ข…๋ฅ˜๊ฐ€ ๋™์ผํ•˜๊ฑฐ๋‚˜ ๊ณต์œ ๋œ๋‹ค.


โˆ™ Heterogeneous DG (์ด์งˆ์  ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™”): 
Src์™€ Tgt ๊ฐ„ Label space๊ฐ€ ์•ˆ๊ฒน์น˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌ๋˜์–ด ์žˆ๋‹ค.
์ด๋Ÿฐ ๊ฒฝ์šฐ, ์ฃผ๋กœ ํŠน์ง• ์ผ๋ฐ˜ํ™”(Feature Generalization)์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค.
์ฆ‰, Label space๊ฐ€ ๋‹ค๋ฅธ๋ฐ๋„ ํŠน์ง•(feature)์„ ์ผ๋ฐ˜ํ™”ํ•˜๋ ค๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
Ex) ImageNet pretrained CNN์„ feature extractor๋กœ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ผ๋ฐ˜ํ™”๋ฅผ ์‹œ๋„

 

 

Cross-Domain FSL

โˆ™ Traditional FSL(Few-Shot Learning):
meta-train์—์„œ ํš๋“ํ•œ ์ง€์‹์„ meta-test๋กœ ์ „์ด(transfer), ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ฐฉ์‹.


โˆ™ CD-FSL (Cross-Domain Few-Shot Learning):
Domain-shift๋ฅผ ๊ณ ๋ คํ•œ Few-Shot Learning.
Meta-Dataset๊ณผ ๊ฐ™์€ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์–ด๋–ป๊ฒŒ ๋„๋ฉ”์ธ ๊ฐ„์˜ ๋ณ€ํ™”๋ฅผ ์ „์ดํ•˜๊ณ  ํ•™์Šตํ•˜๋Š”์ง€์— ์ดˆ์  

โˆ™ "Learned Feature-Wise Transforms" (ICLR-20)
ํŠน์ง•๋ณ„๋กœ ๋ณ€ํ˜•๋œ(transformation) ํ•™์Šต.
stochastic layers๋Š” DG๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.
๋˜ํ•œ, Meta-Learning์„ ์ ์šฉํ•ด Noise Distribution ํ•™์Šต์„ ์‹œ๋„ํ–ˆ๋‹ค.

 

 

 

Sim2Real Meta-Learning

โˆ™ ๋ชฉํ‘œ: Sim2Real for Object Detection & Segmentation:

โˆ™ Meta Representation: Simulator/Dataset.
Idea: ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ํ•™์Šต, ํ•ด๋‹น ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๊ฐ€ ์ƒ์„ฑํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์–ด ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋ฉด, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ.

cf) RL/Evoluation Strategy ํ•„์š”(์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š”  ๋ฏธ๋ถ„ ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ.)

Simulator๋Š” ๋ฏธ๋ถ„ ๋ถˆ๊ฐ€๋Šฅํ•œ(non-differentiable) ํŠน์„ฑ์„ ๊ฐ–๊ธฐ์—, ์ด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด RL ๋˜๋Š” ES์™€ ๊ฐ™์€ ๊ธฐ๋ฒ•๋“ค์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋Ÿฐ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์ œ ํ™˜๊ฒฝ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ํ•™์Šตํ•˜์—ฌ, ๊ฐ์ฒด ๊ฐ์ง€์™€ ๋ถ„ํ• ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์‹ค์ œ๋กœ ์‚ฌ์šฉ๋  ๋•Œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.


 

 

 

 

 

 

 

 

+ Recent posts